If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2000+100x-0.1x^2=0
a = -0.1; b = 100; c = +2000;
Δ = b2-4ac
Δ = 1002-4·(-0.1)·2000
Δ = 10800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10800}=\sqrt{3600*3}=\sqrt{3600}*\sqrt{3}=60\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-60\sqrt{3}}{2*-0.1}=\frac{-100-60\sqrt{3}}{-0.2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+60\sqrt{3}}{2*-0.1}=\frac{-100+60\sqrt{3}}{-0.2} $
| 3x+3=2+7(x+9) | | 4x-(2x-4)=4x+4 | | (6x+2)/4=x+2 | | -20=2000+100x-0.1x^2 | | 4n-40=7(1+5n)=-6n-14 | | 15/13x=20 | | 3n+-6=12 | | 2m+1=5Z | | 3/8s=36 | | 3h-6=25-1h | | 9x^2-6x+1+(64*((6x-9x^2-1)/64)^.5=0 | | 14b-16=44 | | -7x-19=13x+131 | | -34=1-7w | | 9/4=-3w | | 5(3-x)+8x=3(x+50 | | 10=p.5 | | 4.x-3=9 | | 7{3=4y}-15y=73 | | t/4=15 | | j/7-12=79 | | 6k+5=2k+15 | | -12=-7x-5+14 | | 7/4+z=8/3 | | -1/3x+1=- | | 5=124=7x | | 135=5y | | 64−13=u | | 219-w=274 | | -9=v/3 | | 3/15=7/x | | 7=11+v/5 |